Optimal hemodynamic response model for functional near-infrared spectroscopy

نویسندگان

  • Muhammad A. Kamran
  • Myung Yung Jeong
  • Malik M. N. Mannan
چکیده

Functional near-infrared spectroscopy (fNIRS) is an emerging non-invasive brain imaging technique and measures brain activities by means of near-infrared light of 650-950 nm wavelengths. The cortical hemodynamic response (HR) differs in attributes at different brain regions and on repetition of trials, even if the experimental paradigm is kept exactly the same. Therefore, an HR model that can estimate such variations in the response is the objective of this research. The canonical hemodynamic response function (cHRF) is modeled by two Gamma functions with six unknown parameters (four of them to model the shape and other two to scale and baseline respectively). The HRF model is supposed to be a linear combination of HRF, baseline, and physiological noises (amplitudes and frequencies of physiological noises are supposed to be unknown). An objective function is developed as a square of the residuals with constraints on 12 free parameters. The formulated problem is solved by using an iterative optimization algorithm to estimate the unknown parameters in the model. Inter-subject variations in HRF and physiological noises have been estimated for better cortical functional maps. The accuracy of the algorithm has been verified using 10 real and 15 simulated data sets. Ten healthy subjects participated in the experiment and their HRF for finger-tapping tasks have been estimated and analyzed. The statistical significance of the estimated activity strength parameters has been verified by employing statistical analysis (i.e., t-value > t critical and p-value < 0.05).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical Imaging of the Motor Cortex in the Brain in Order to Determine the Direction of the Hand Movements Using Functional Near-Infrared Spectroscopy (fNIRS)

Introduction: In recent years, optical imaging has attracted a lot of attention from scholars as a non- aggressive, efficient method for evaluating the activities of the motor cortex in the brain. Functional near-infrared spectroscopy (fNIRS (is a tool showing the hemodynamic changes in a cortical area of the brain according to optical principles. The present study has been de...

متن کامل

Quantitative Comparison of Analytical solution and Finite Element Method for investigation of Near-Infrared Light Propagation in Brain Tissue Model

Introduction: Functional Near-Infrared Spectroscopy (fNIRS) is an imaging method in which light source and detector are installed on the head; consequently, re-emission of light from human skin contains information about cerebral hemodynamic alteration. The spatial probability distribution profile of photons penetrating tissue at a source spot, scattering into the tissue, and being released at ...

متن کامل

False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward.

We highlight a significant problem that needs to be considered and addressed when performing functional near-infrared spectroscopy (fNIRS) studies, namely the possibility of inadvertently measuring fNIRS hemodynamic responses that are not due to neurovascular coupling. These can be misinterpreted as brain activity, i.e., "false positives" (errors caused by wrongly assigning a detected hemodynam...

متن کامل

Activation detection in functional near-infrared spectroscopy by wavelet coherence.

Functional near-infrared spectroscopy (fNIRS) detects hemodynamic responses in the cerebral cortex by transcranial spectroscopy. However, measurements recorded by fNIRS not only consist of the desired hemodynamic response but also consist of a number of physiological noises. Because of these noises, accurately detecting the regions that have an activated hemodynamic response while performing a ...

متن کامل

The Feasibility of Using Wearable Functional Near-Infrared Spectroscopy (fNIRS) to Study Hemodynamic Response during Mental Arithmetic Task

Functional near-infrared spectroscopy (fNIRS) is the promising non-invasive technique for brain-computer interface (BCI) for brain signal acquisition. Wearable multi-channel fNIRS devices that can provide much comport for applications and researches are commercially available in the market recently. In this study, we research possibility of the wearable multi-channel fNIRS device by evaluating ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2015